Fructose induces transketolase flux to promote pancreatic cancer growth.
نویسندگان
چکیده
Carbohydrate metabolism via glycolysis and the tricarboxylic acid cycle is pivotal for cancer growth, and increased refined carbohydrate consumption adversely affects cancer survival. Traditionally, glucose and fructose have been considered as interchangeable monosaccharide substrates that are similarly metabolized, and little attention has been given to sugars other than glucose. However, fructose intake has increased dramatically in recent decades and cellular uptake of glucose and fructose uses distinct transporters. Here, we report that fructose provides an alternative substrate to induce pancreatic cancer cell proliferation. Importantly, fructose and glucose metabolism are quite different; in comparison with glucose, fructose induces thiamine-dependent transketolase flux and is preferentially metabolized via the nonoxidative pentose phosphate pathway to synthesize nucleic acids and increase uric acid production. These findings show that cancer cells can readily metabolize fructose to increase proliferation. They have major significance for cancer patients given dietary refined fructose consumption, and indicate that efforts to reduce refined fructose intake or inhibit fructose-mediated actions may disrupt cancer growth.
منابع مشابه
Glucose and fructose metabolism in Zymomonas anaerobia.
Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner-Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence o...
متن کاملElevation of β-galactoside α2,6-sialyltransferase 1 in a fructose-responsive manner promotes pancreatic cancer metastasis
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of pancreatic cancer with clinical characteristics of local invasion and early metastasis. Recent cohort studies indicate high fructose intake is associated with an increase in pancreatic cancer risk. However, the mechanisms by which fructose promotes pancreatic tumorigenesis remain unclear. Herein, Kras+/LSLG12D mice were crossed wi...
متن کاملIdentification of potential P. falciparum transketolase inhibitors: pharmacophore design, in silico screening and docking studies
Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a novel target in Plasmodium falciparum as it has least homology with the human host. Homology model of P. falciparum transketolase (PfTk) was constructed using the crystal structure of S. cervisiae transketolase as a template, and used for the identification and prioritiza...
متن کاملLysosomal dysfunction and autophagy blockade contribute to IMB-6G-induced apoptosis in pancreatic cancer cells
Targeting the autophagic pathway is currently regarded as an attractive strategy for cancer drug discovery. Our previous work showed that IMB-6G is a novel N-substituted sophoridinic acid derivative with potent cytotoxicity against tumor cells, yet the effect of IMB-6G on autophagy and pancreatic cancer cell death remains unknown. Here, we show that IMB-6G inhibits the growth of MiaPaCa-2 and H...
متن کاملThe role of transketolase and octulose in the resurrection plant Craterostigma plantagineum
Phylogenetic analysis revealed that Craterostigma plantagineum has two transketolase genes (transketolase 7 and 10) which are separated from the other transketolase genes including transketolase 3 from C. plantagineum We obtained recombinant transketolase 3, 7, and 10 of C. plantagineum and showed that transketolase 7 and 10 of C. plantagineum, but not transketolase 3, catalyse the formation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 70 15 شماره
صفحات -
تاریخ انتشار 2010